Safe end-to-end imitation learning for model predictive control
نویسندگان
چکیده
We propose the use of Bayesian networks, which provide both a mean value and an uncertainty estimate as output, to enhance the safety of learned control policies under circumstances in which a test-time input differs significantly from the training set. Our algorithm combines reinforcement learning and end-to-end imitation learning to simultaneously learn a control policy as well as a threshold over the predictive uncertainty of the learned model, with no hand-tuning required. Corrective action, such as a return of control to the model predictive controller or human expert, is taken when the uncertainty threshold is exceeded. We validate our method on fully-observable and vision-based partially-observable systems using cart-pole and autonomous driving simulations using deep convolutional Bayesian neural networks. We demonstrate that our method is robust to uncertainty resulting from varying system dynamics as well as from partial state observability.
منابع مشابه
Agile Off-Road Autonomous Driving Using End-to-End Deep Imitation Learning
We present an end-to-end imitation learning system for agile, off-road autonomous driving using only low-cost on-board sensors. By imitating a model predictive controller equipped with advanced sensors, we train a deep neural network control policy to map raw, high-dimensional observations to continuous steering and throttle commands. Compared with recent approaches to similar tasks, our method...
متن کاملImplementation of Low-Cost Architecture for Control an Active Front End Rectifier
In AC-DC power conversion, active front end rectifiers offer several advantages over diode rectifiers such as bidirectional power flow capability, sinusoidal input currents and controllable power factor. A digital finite control set model predictive controller based on fixed-point computations of an active front end rectifier with unity displacement of input voltage and current to improve dynam...
متن کاملImitation Learning with THOR
The recently proposed House Of inteRactions (AI2THOR) framework [35] provides an simulation environment for high quality 3D scenes. Together with THOR, a Targetdriven model is introduced to improve generalization capabilities. Imitation learning or learning by demonstration is known to be more effective in communicating task. In this project, we extend the Target-driven model by exploring both ...
متن کاملEnd-to-End Differentiable Adversarial Imitation Learning
Generative Adversarial Networks (GANs) have been successfully applied to the problem of policy imitation in a model-free setup. However, the computation graph of GANs, that include a stochastic policy as the generative model, is no longer differentiable end-to-end, which requires the use of high-variance gradient estimation. In this paper, we introduce the Modelbased Generative Adversarial Imit...
متن کاملUniversal Planning Networks
A key challenge in complex visuomotor control is learning abstract representations that are effective for specifying goals, planning, and generalization. To this end, we introduce universal planning networks (UPN). UPNs embed differentiable planning within a goal-directed policy. This planning computation unrolls a forward model in a latent space and infers an optimal action plan through gradie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018